Scaling Strategies

From Vertical to Horizontal Scaling




Learning Objectives

By the end of this session, you will have acquired the following information:
« Vertical Scaling (Scaling Up)

« Horizontal Scaling (Scaling Out)

 Consistent Hashing

« Load Balancing




Illustrative Example

 Alireza is a regular customer of an e-commerce website.

- He attempted to make a purchase during Black Friday.

- Adding a product to his basket took about 3 seconds.

- The website typically handles 10,000 transactions per month.

« On Black Friday, the system was overloaded with 5,000 transactions in a single day.




Vertical Scaling




Cache: 16 M
Storage: 30G

Cache: 64M
Storage: 300G




Illustrative Example

o Alireza is a regular customer of an e-commerce website.
- He attempted to make a purchase during Black Friday.

- Adding a product to his basket resulted in a Service Unavailable response.

- The website typically handles 10,000 transactions per month.

« On Black Friday, the system was overloaded with 5,000 transactions in a single day.




Horizontal Scaling




192.168.1.104

192.168.1.103

192.168.1.102

192.168.1.101

192.168.1.100

Black Box

End User

192.168.1.1

216.239.38.120




Consistent Hashing




Server A

Key Hash

adb1ef332di1f6e99e809fbgbooan8efcadg30e82
1073ab6cdaqgbgg1cd29fge83a307f34004ae9327
87ba78eofo3afcef60657f342ec5567368fadd8¢
3b88ea816¢78ec104041a75e78f32ec804eaac39

c34bfsageccabedc3128018bi1dd235a0f7bdff20
afo65e03e22fe1f5f95b8cegfq761c74dan76857
6df377eco1aodfsfo54484fbfdoc13d7ed27d832
05db376c6fab6453bdgc80b31d2c675977851be34

Server B Server C Server D

Hash % 4

oS M W O H O W N




Key Hash Hash % 3
adbi1ef332d1f6e99e809ftbgbooan8efcadg30e82
1073ab6cdaqgbgg1cd29fg9e83a307f34004ae9327
87ba78e0fo3afcef60657f342ec5567368fadd8c
3b88ea816c¢78ec104041a75e78f32ec804eaac39

C34bfsageccabedc3128018bi1dd235a0f7bdff20
Afo65e03e22fe1f5f95b8cegf4761c74dan76857
6df377eco1aodf5fo54484fbfdoc13d7ed27d832
05db376c6fa6453bdgc80b31d2c675977851be34

O H H O N H = R

X
I

Server A Server B Server C Server D

~
req6

req4
reqy




sO = Server A
s1 = Server B
s2 = Server C
s3 = Server D




Server B

SO O = Server A
SO 1 = Server A
SO 2 = Server A
s1_0 = Server B
s1 1= Server B
s1 2 = Server B

s2 0 = Server C
s2 1 = Server C
s2 2 = Server C
s3_0 = Server D
s3_1 = Server D
s3_2 = Server D




Complexity

K

Add a node 0 (_ + log N)
N
K

Remove a node 0 (N + log N)

Remove a key

O(logN)




Load Balancing




Load Balancing Benefits

« Optimizing resource utilization
« Maximum throughput
« Reducing latency

 Ensuring fault-tolerant configurations




http {

upstream customersvc {

server 192.168.1.101 weight=5;
server 192.168.1.102:
server 192.68.1.100 backup;

}
server {
location /customer {
proxy_pass http://customersvc,;
}
}




A request is sent to the server with the least number of active connections, with server
weights taken into consideration

upstream backend {
least_conn;
server 192.168.1.101;
server 192.168.1.102;




The method guarantees that requests from the same address get to the same server unless it
is not available.

upstream backend {
ip_hash;
server 192.168.1.101;
server 192.168.1.102;:




The server to which a request is sent is determined from a user-defined key which can be a
text string, variable, or a combination.

upstream backend {
hash Srequest_uri consistent;
server 192.168.1.101;
server 192.168.1.102;




Further Resources

« A Guide to Consistent Hashing



https://www.toptal.com/big-data/consistent-hashing

