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Learning Objectives

By the end

| of this session, you will have acquired the following information:

« Commanc

| vs Event

« Event-driven Architecture

« Self-contained Service

e Orchestration Pattern

« Choreography Pattern




Command vs Event

« Command

> A message that is the equivalent of a request. It specifies the operation to invoke and its
parameters.

- Event

» A message indicating that something notable has occurred in the sender. An event is
often a domain event, which represents a state change of a domain object such as an
Order, or a Customer.




Event Channel
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Command Channel

Message Broker: Command Channel Producer X
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Illustrative Example

8 Changes Address
__.-__, Customer

Insurance quoting is the process by which an insurance company calculates
the cost of providing insurance for something.

requote

Insurance Quoting

d email
Why should customer service handle the requote command? The dependency S e

should be reversed to reflect real-world processes.

Notification




Event-driven Architecture

8 Changes Address

3

Address Changed

The Customer service isn’t aware of the specifics of the insurance quoting service. It
publishes an Address Changed event.
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8 Changes Address
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Address Changed

New services can be integrated into the system without impacting >

the Customer service.

Notification




Self-contained Service




Consumer Event Channel
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It has replicas of the consumer and restaurant data.
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Orchestration Pattern




The orchestrator manages complex business flows by calling independently deployed services,
handling exceptions, retrying requests, maintaining state, and returning the final response.
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Choreography Pattern




Each service participates in the decision-making process

transaction, instead of relying on a central point of control.
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Further Resources

e Inter-Process Communication in a Microservice Architecture




