Event-driven
Architecture

Systems Analysis & Design




Learning Objectives

By the end

| of this session, you will have acquired the following information:

« Commanc

| vs Event

« Event-driven Architecture

« Self-contained Service

e Orchestration Pattern

« Choreography Pattern




Command vs Event

« Command

> A message that is the equivalent of a request. It specifies the operation to invoke and its
parameters.

- Event

» A message indicating that something notable has occurred in the sender. An event is
often a domain event, which represents a state change of a domain object such as an
Order, or a Customer.




Event Channel

Message Broker: Event Channel Producer X

Order Created
Producer X

MM )~

MMM

~

) Consumer A

Consumer B




Command Channel

Message Broker: Command Channel Producer X

Producer X = EEEEEEEEEEEEE >» E E E

ReplyQueue

E E E €------- Consumer A

RequestQueue

Messageld: msgld

ReturnAddress: ReplyQueue
Body

Correlationld: msgld
Body




Illustrative Example

8 Changes Address
__.-__, Customer

Insurance quoting is the process by which an insurance company calculates
the cost of providing insurance for something.

requote

Insurance Quoting

d email
Why should customer service handle the requote command? The dependency S e

should be reversed to reflect real-world processes.

Notification




Event-driven Architecture

8 Changes Address

3

Address Changed

The Customer service isn’t aware of the specifics of the insurance quoting service. It
publishes an Address Changed event.

Mr— ]

:




8 Changes Address
|

=~

Address Changed

New services can be integrated into the system without impacting >

the Customer service.

Notification




Self-contained Service




Consumer Event Channel

-,
-
*
-

rd
L4
”
”
”
-

'
rd
s
-
”
.
L4
-
Order X
Y
.
~
~
~
~
-~

\ 4

TABLE CONSUMERS
ORDERS

~
~
Y

~

TABLE

RESTAURANTS

()‘ Consumer TABLE
CONSUMERS

Restaurant Event Channel

~
“
~

()« Restaurant
RESTAURANTS

It has replicas of the consumer and restaurant data.

e




Orchestration Pattern




The orchestrator manages complex business flows by calling independently deployed services,
handling exceptions, retrying requests, maintaining state, and returning the final response.

N —

Transaction

A

4. Records reserved
stock position against
account ABC

—

Account
Transaction Fee rules
A

3. Requests reservation
of 100 units of Stock A
against account ABC

Y
> Fee
5. Requests calculation

of fee

1. Places order to sell
100 units of Stock A
8 from account ABC

2. Records order
details in database

6. Requests placement
of order to market

7. Places order onto
stock exchange
Market q Stock Exchange




Choreography Pattern




Each service participates in the decision-making process

transaction, instead of relying on a central point of control.

Transaction

A

4. Records

Account
Transaction

1. Places order to sell

100 units of Stock A
8 from account ABC

2. Records order
details in database

A

3. Publish Order Created, ,

reserved

stock position against
account ABC

3. Requests reservation
of 100 units of Stock A
against account ABC

about the workflow of a business

)

Fee rules

9. Order
status of

8. Order subscribes
to Order Placed

6. Publish
Order Placed
updates
order to placed

A

4. Market subscribes
i to Order Created

5. Places order onto
stock exchange

Stock Exchange




Further Resources

e Inter-Process Communication in a Microservice Architecture




