
Transactions
Systems Analysis & Design



Learning Objectives

By the end of this session, you will have acquired the following information:

• Outbox Pattern

• Saga Pattern



Outbox Pattern

A service might update the database and then crash, for example,
before sending the corresponding message.

A service often needs to publish messages as part of a transaction
that updates the database.



Saga Pattern



The createOrder() operation reads from the Consumer Service and updates data in the Order
Service, Kitchen Service, and Accounting Service.



The createOrder() operation is implemented by a saga that consists of local transactions in
several services.



When a step of a saga fails due to a business rule violation, the saga must explicitly undo the
updates made by previous steps by executing compensating transactions.



Step Service Transaction Compensating Transaction

1 Order createOrder() rejectOrder()

2 Consumer verifyConsumerDetails() —

3 Kitchen createTicket rejectTicket()

4 Accounting authorizedCreditCard —

5 Kitchen approveTicket() —

6 Order approveOrder() —





Successful Order Fulfillment Saga

1. The Order Service creates an Order in the APPROVAL_PENDING state and publishes an OrderCreated
event.

2. Consumer Service consumes the OrderCreated event, verifies that the consumer can place the order,
and publishes a ConsumerVerified event.

3. Kitchen Service consumes the OrderCreated event, validates the Order, creates a Ticket in a
CREATE_PENDING state, and publishes the TicketCreated event.

4. Accounting Service consumes the OrderCreated event and creates a CreditCardAuthorization in
a PENDING state.

5. Accounting Service consumes the TicketCreated and ConsumerVerified events, charges the
consumer’s credit card, and publishes the CreditCardAuthorized event.

6. Kitchen Service consumes the CreditCardAuthorized event and changes the state of the Ticket to
AWAITING_ACCEPTANCE.

7. Order Service receives the CreditCardAuthorized events, changes the state of the Order to
APPROVED, and publishes an OrderApproved event.



Further Resources

• Managing Transactions with Sagas


