
gRPC
Systems Analysis & Design



Learning Objectives

By the end of this session, you will have acquired the following information:

• gRPC

• Protocol Buffers



What is gRPC?

• gRPC is a high-performance Remote Procedure Call (RPC) framework that operates over
HTTP/2.

• With gRPC, a client application can call a method on a server application on a different
machine as if it were a local object.

• The interfaces that can be called remotely, along with their parameters and return types,
are specified.

• The server implements this interface and runs a gRPC server to handle client calls.

• The client, on the other hand, has a stub providing the same methods as the server.



By default, gRPC uses Protocol Buffers:

Google’s open source mechanism for serializing
structured data.



Protocol Buffers Workflow



• The process begins with defining the data structure for serialization.
• This is done in a .proto file.
• The data is structured into messages.
• Each message contains name-value pairs, referred to as fields.



• The protoc compiler generates data access classes in the chosen language.
• These classes provide simple accessors for each field.
• They also provide methods to serialize and parse the entire structure to and from raw

bytes.



• gRPC is designed around the concept of defining a service.
• gRPC services are defined in standard proto files.
• The service outlines the methods that can be invoked remotely.
• The methods include their parameters and return types.



Four Kinds of Service Methods

Unary RPCs
➢ The client sends a single request and receives a single response, similar to a normal function call.

Server streaming RPCs
➢ The client sends a request and receives a stream of messages until there are no more messages. 

Message ordering is guaranteed.

Client streaming RPCs
➢ The client sends a sequence of messages using a stream and waits for the server to read them and 

return a response. Message ordering is guaranteed.

Bidirectional streaming RPCs
➢ Both sides send a sequence of messages using a read-write stream. The streams operate independently, 

allowing clients and servers to read and write in any order. Message ordering is preserved in each 
stream.





Server Implementation

This line sends the reply to the client. If this were a streaming call, 
you could call onNext multiple times to send multiple responses.

This line signals that the server has finished sending 
responses. After calling this method, the server can’t 
send any more responses for this call.



• Start a gRPC server for client use.
• Use forPort() to set the port.
• Create GreeterImp instance and add it to the service with addService().
• Use start() to launch the RPC server.



Client Implementation

This line calls the sayHello method on the blockingStub
object, passing in the request object created earlier.



• A Channel represents a communication line to a gRPC server. You can create a channel
using the ManagedChannelBuilder.

• Once you have a Channel, you can use it to create a blocking stub. The stub is used to call
methods on the server. The class and method used to create the stub depend on your
service definition.



Further Resources

• Introduction to gRPC in Java


