
Partitioning
Systems Analysis & Design



Learning Objectives

By the end of this session, you will have acquired the following information:

• Scalability through Partitioning

• Partitioning by Key Range

• Partitioning by Hash of Key

• Partitioning and Secondary Indexes



Scalability through Partitioning

• Replication is insufficient for very large datasets or high query throughput.

• Data needs to be divided into partitions, also known as sharding.

• Each piece of data is assigned to exactly one partition in the defined partitions.

• The main reason for wanting to partition data is scalability.



• Partitioning is usually combined with replication so that copies of each partition are
stored on multiple nodes.

• Each node serves as a leader for some partitions and as a follower for others.



Partitioning by Key Range



• Partitioning assigns a continuous range of keys to each partition, enabling direct requests
to the appropriate node if partition-node assignments are known.

• The ranges of keys are not necessarily evenly spaced, because your data may not be
evenly distributed.

• The downside of key-range partitioning is that it can lead to hot spots due to certain
access patterns.



Partitioning by Hash of Key



• Many distributed datastores use a hash function to determine the partition for a given
key.

• By using the hash of the key for partitioning, we lose a beneficial property of key-range
partitioning: the ability to perform efficient range queries.



Partitioning and Secondary Indexes

• If records are only ever accessed via their primary key, we can determine the partition from
that key and use it to route read and write requests to the partition responsible for that key.

• Secondary indexes complicate the situation as they search for specific value occurrences,
not unique record identification.

• Examples
➢ find all actions by user aaghamohammadi

➢ find all articles containing the word Alireza

➢ find all cars whose color is red



• Each partition maintains own secondary indexes, covering only the documents in that
partition

• The approach to querying a partitioned database is known as scatter/gather



• Instead of each partition having its own secondary index (a local index), a global index
that covers data across all partitions can be constructed.

• While a global index must also be partitioned, its partitioning can differ from that of the
primary key index.



Further Resources

• Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable, and 
Maintainable Systems (pages 221-241)


