YouTube: Case Study

Systems Analysis & Design

Learning Objectives

By the end of this session, you will have acquired the following information:

- YouTube System Design
- Back-of-the-Envelope Estimation
- **Object Storage**
- Adaptive Bitrate Sampling
- **URL Shortener**

YouTube 2023: Key Stats & Trends

- Total number of monthly active users: 2.7 billion.
- Number of videos watched per day: 5 billion.
- Number of creators on YouTube: 60 million.
- Amount of video content created daily: 720,000 hours.
- YouTube's Ad revenue in 2023: \$30.4 billion.

Key Requirements

- Video upload capability
- Ability to share videos.
- Smooth video streaming experience
- Option to change video quality
- Ability to like and dislike videos
- Thumbnail viewing feature
- High availability, scalability, and reliability
- Support for mobile apps, web browsers, and smart TVs

Back-of-the-Envelope Estimation

- Daily Active Users (DAU) = 2.7 billion / 30 days = 90 million
- 10% of creators upload 1 video per week = 60 million * 10% / 7 days \approx 850,000 videos per day.
- Daily Storage Requirement: 850,000 videos at 200MB each \approx 170TB/day * 365 days/year \approx 62PB/year
- Write Bandwidth Requirement: $170TB/day / (24 * 60 * 60 seconds) \approx 2 GBps$
- Read Bandwidth Requirement: 5 billion/day * 200MB / (24 * 60 * 60 seconds) \approx 12 TBps
- Number of Servers: 90 million concurrent requests / (10,000 requests/second/server) = 9,000 servers

Key Building Blocks

- Databases for storing metadata related to videos, thumbnails, comments, and user information.
- Object storage in housing all the videos on the platform.
- A Content Delivery Network (CDN) to deliver content efficiently to end users
- Load balancers for distributing the multitude of incoming client requests among the available servers.

Object Storage

- Openstack Swift is a highly available, distributed, eventually consistent object/blob store.
- The Object Storage system uses a hierarchical structure:
 - Account: The top level of the hierarchy. Created by your service provider, it owns all resources and defines a \bigcirc namespace for containers. Containers can share names across different accounts.
 - Container: This is a namespace for objects. Each container can hold multiple objects, but an object with the same \bigcirc name in two different containers represents two different objects.
 - **Object:** This is used to store data content such as documents, images, and so on. Custom metadata can also be stored \bigcirc with an object.

OBJECT

- A storage URL in Swift for an object follows this format:
 - https://swift.example.com/v1/account/container/object 0
- Cluster Location: The cluster location is swift.example.com/v1/
- Storage Locations: /account/container/object
- /account
 - Contains metadata about the account and a list of containers in the account. \bigcirc
- /account/container
 - Stores metadata about the container and a list of objects in the container. 0
- /account/container/object
 - Where the data object and its metadata are stored. \bigcirc

- Swift has four server processes: proxy, account, container, and object.
- A node running only the proxy server process is known as a proxy node.
- Nodes running one or more of the other server processes (account, container, or object) are often referred to as storage nodes.

- Regions typically indicate when parts of the cluster are located within different geographical boundaries.
- Zones are defined by a distinct set of physical hardware. The failure of one zone would be isolated from other zones.
- Devices refer to the on-disk names of the devices on the server. For example, sdb1.

Region 1	Regio
Zone 1	
Zone 2	Zone

- Rings in the cluster determine the location of data.
- Separate rings exist for accounts, containers, and objects.
- Each consistent hashing ring is distributed to every node in the cluster.

Adaptive Bitrate Streaming

Adaptive bitrate streaming (ABR) is used to dynamically adjust video quality based on a user's available

bandwidth, device performance, and network conditions.

Video URL

- Assuming we have the capability to generate distributed unique IDs, we could initially transform these IDs using a base 62 conversion, subsequently facilitating the creation of a URL.
- In the Twitter case study, we discuss how to create a distributed unique ID.

Unique ID	Short ID	Sho
839299365868340224	b6lEW5NwxO0	http

rt URL

s://youtu.be/b6lEW5NwxO0

Further Resources

• System Design Interview — An Insider's Guide (pages: 220 - 243)