
Yelp: Case Study
Systems Analysis & Design

Learning Objectives

By the end of this session, you will have acquired the following information:

● Yelp System Design

● Geo Index

Proximity Service

● A proximity service is utilized to identify nearby locations, including restaurants, hotels, theaters, museums,

and more.

● This service is a fundamental component that enables features such as locating the top-rated restaurants in the

vicinity on platforms like Yelp.

Functional Requirements

● Retrieve all businesses based on a user’s location, defined by a pair of latitude and longitude coordinates, and

a specified radius.

● Business owners have the ability to add, delete, or update their business information. However, these changes

do not need to be reflected in real-time.

● Customers have the capability to view comprehensive information about a business.

Non-Functional Requirements

● Low Latency: Users should have the ability to view nearby businesses swiftly.

● Data Privacy: Location information is sensitive data. When designing a location-based service (LBS), user

privacy should always be a primary consideration.

● High Availability and Scalability: We should ensure that our system is capable of handling traffic spikes during

peak hours in densely populated areas.

API Design

● GET /v1/search/nearby

Field Description Type
latitude Latitude of a given location float

longitude Longitude of a given location float

radius Optional. Default is 5km int

API Design

API Detail
GET /v1/businesses/:id Return detailed information about a business

POST /v1/businesses Add a business

PUT /v1/businesses/:id Update details of a business

DELETE /v1/businesses/:id Delete a business

Read/Write Ratio

● The read volume is high due to the frequent use of the following two features:

○ Searching for nearby businesses

○ Viewing detailed information about a business

● The write volume is low because operations such as adding, removing, and editing business information are

infrequent.

Business Table

● A relational database, such as MySQL, could be a suitable choice.

● A geo index table is used for the efficient processing of spatial operations.

Business
business_id (primary key)

address

city

state

country

latitude

longitude

High-Level Design

Fetch Nearby Businesses

1. Two-Dimensional Search

2. Evenly Divided Grid

3. Geohash

4. Quadtree

5. Google S2 (Hilbert Curve)

Two-Dimensional Search

The naive way to find nearby businesses is to draw a circle with a predefined radius and find all the businesses

within that circle.

SELECT business_id, latitude, longitude
FROM business
WHERE
 (latitude BETWEEN {:my_lat} - radius AND {:my_lat} + radius)
AND
 (longitude BETWEEN {:my_long} - radius AND {:my_long} + radius)

This query is not efficient because we need to perform an
intersection operation.

Evenly Divided Grid

● One simple approach is to evenly divide the world into small grids.

● A single grid could contain multiple businesses, and each business on the map belongs to one grid.

● The distribution of businesses is not even.

● Ideally, we would want to use more granular grids for dense areas and larger grids for sparse areas.

Geohash

● Geohash is superior to the evenly divided grid option.

● It operates by converting the two-dimensional longitude and latitude data into a one-dimensional string of

letters and digits.

Geohash

● The world is recursively divided into smaller and smaller grids with each additional bit.

● The longitude range [-180,0] is represented by 0, and the longitude range [0, 180] is represented by 1.

Geohash

● The world is recursively divided into smaller and smaller grids with each additional bit.

● The latitude range [-90,0] is represented by 0, and the longitude range [0, 90] is represented by 1.

● Repeat this subdivision, alternating between longitude and latitude, until the remaining area is within the

desired precision.

● Geohash usually uses base32 representation.

Geohash

● For example, the longitude and latitude coordinates (37.77564, -122.41365) result in the binary sequence

“0100110110010001111011110” and produce the geohash “9q8yy”.

Binary 01001 10110 01000 11110 11110

Decimal 9 22 8 30 30

Base 32 9 q 8 y y

Geohash

● We can decode a geohash into its corresponding latitude and longitude.

Base 32 9 q 8 y y

Decimal 9 22 8 30 30

Binary 01001 10110 01000 11110 11110

Longitude 0-0-1 -0-1- 0-0-0 -1-1- 1-1-0

Latitude -1-0- 1-1-0 -1-0- 0-1-0 -1-1-

Geohash

Geohash length Grid (width, height)

1 (5009.4km, 4992.6km)

2 (1252.3km, 624.1km)

3 (156.5km, 156km)

4 (39.1km, 19.5km)

5 (4.9km, 4.9km)

6 (1.2km, 609.4m)

7 (152.9m, 152.4m)

8 (38.2m, 19m)

9 (4.8m, 4.8m)

10 (1.2m, 59.5cm)

11 (14.9cm, 14.9cm)

12 (3.7cm, 1.9cm)

Geohash

● Geohash has 12 levels of precision.

● The precision factor determines the size of the grid.

● We aim to find the minimal geohash length that encompasses the entire circle drawn by the user-defined

radius.

● In Yelp, we are only interested in geohashes with lengths between 4 and 6.

Geohash

● Geohashing guarantees that the longer the shared prefix is between two geohashes, the closer they are.

● However, the reverse is not necessarily true: two locations can be very close but may not share a prefix at all.

Geohash

● Two positions can have a long shared prefix, but they may belong to different geohashes.

● A common solution is to fetch all businesses not only within the current grid but also from its neighboring

grids.

● The geohashes of neighbors can be calculated in constant time.

● What should we do if there are not enough businesses returned from the current grid and all its neighboring

grids combined?

○ We can remove the last digit of the geohash and use the new geohash to fetch nearby businesses.

○ If there are still not enough businesses, we can continue to expand the scope by removing another digit.

Quadtree

● A quadtree is a data structure that is commonly used to partition a two-dimensional space by recursively

subdividing it into four quadrants until the contents of the grids meet certain criteria.

● With a quadtree, we build an in-memory tree structure to answer queries. It is not a database solution.

Google S2 (Hilbert Curve)

● It is an in-memory solution.

● It maps a sphere to a one-dimensional index based on the Hilbert curve.

● Two points that are close to each other on the Hilbert curve are also close in one-dimensional space.

● http://bit-player.org/extras/hilbert/

Comparison

Geo Index Companies

geohash Bing map, Redis, MongoDB, Lyft

quadtree Yext

Both geohash and quadtree Elasticsearch

S2 Google Maps, Tinder

Further Resources

● System Design Interview — An Insider's Guide — volume 2 (pages: 9 - 42)

