Cloud Patterns: Part 1

Systems Analysis & Design



Learning Objectives

By the end of this session, you will have acquired the following information:

Ambassador
Anti-Corruption Layer
Backends for Frontends
Retry

Circuit Breaker
Bulkhead

Dead Letter Queue
Rolling Deployment
Blue-Green Deployment
Canary Deployment
Scatter-Gather

CQRS



Ambassador: Problem

e We have to implement infrastructure-related features:
o monitoring
o service discovery
o logging
o encryption
e What if Service A is a legacy service and we are unable to change its source code?
e What if we have multiple services, each developed in a different programming language?
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Ambassador: Solution

e Service meshes like Consul or Istio embody this concept at a production level.
e In the Kubernetes environment, we deploy the Ambassador within the same pod that houses the service

container.
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Anti-Corruption Layer: Problem 1

e During migration, we may need to interface with the legacy system and data.

e The legacy system may employ an outdated protocol.
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Anti-Corruption Layer: Problem 2

¢ We may need to engage with external systems, beyond our control, that could be using an outdated protocol.
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Anti-Corruption Layer: Solution
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Backends for Frontends: Problem

e For interfacing with multiple downstream services, an API backend is required.
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Backends for Frontends: Problem
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Backends for Frontends: Solution
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Retry: Problem

e The fault is temporary and short-lived.

e The service has the potential to recover from the fault and return to normal operations soon
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Retry: Solution

e Idempotency in the invoked operation is important.
e What should be the time intervals for sending requests to the service: Fixed, Incremental, or Exponential?
e How many times should the request be sent?
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Circuit Breaker: Problem

e We operate under the assumption that faults are temporary when using the retry pattern. But what happens if
they’re not?

e Optimistic view: even if one request fails, the subsequent one will succeed.
e Pessimistic view: if a series of requests have failed, the following one will fail as well.



Circuit Breaker: Solution

#requests: 50
#failed: 2
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Circuit Breaker: Solution

success count threshold reached  Tallure rate threshold reached
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Bulkhead

Using excessive resources of one service can negatively impact other services.
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Bulkhead: Kubernetes example

apiVersion: vi
kind: pod
metadata:
name: nginx-reverse-proxy
spec:
containers:

- name: nglnx-reverse-proxy-container
image: nginx
resources:

requests:
memory: "512Mi"
cpu: "1"

limits:
memory: "1024Mi"
cpu: "2"



Further Resources

e youtube.com/@golemcourse



