Cloud Patterns: Part 1

Systems Analysis & Design

Learning Objectives

By the end of this session, you will have acquired the following information:

Ambassador
Anti-Corruption Layer
Backends for Frontends
Retry

Circuit Breaker
Bulkhead

Dead Letter Queue
Rolling Deployment
Blue-Green Deployment
Canary Deployment
Scatter-Gather

CQRS

Ambassador: Problem

e We have to implement infrastructure-related features:
o monitoring
o service discovery
o logging
o encryption
e What if Service A is a legacy service and we are unable to change its source code?
e What if we have multiple services, each developed in a different programming language?

w2

request >

Service A Service B
< response

retries
monitoring
Host logging
encryption
authentication

Ambassador: Solution

e Service meshes like Consul or Istio embody this concept at a production level.
e In the Kubernetes environment, we deploy the Ambassador within the same pod that houses the service

container.

request___5
Service A Service B
response———
retries
monitoring
logging
Host encryption

authentication

Anti-Corruption Layer: Problem 1

e During migration, we may need to interface with the legacy system and data.

e The legacy system may employ an outdated protocol.

New System

New System

New System

Database

B
B

Database

3
3

Migration

Old System

Database

Anti-Corruption Layer: Problem 2

¢ We may need to engage with external systems, beyond our control, that could be using an outdated protocol.

Communication

external system

Anti-Corruption Layer: Solution

New System

New System

New System

Database

N
-

Database

]
i

new

protocol
D S——

Anti-Corruption Layer

old

protocol
D —

Old System

Database

—

Backends for Frontends: Problem

e For interfacing with multiple downstream services, an API backend is required.

Frontend Team Backend Team

Downstream Services

]
]
]
;
AP| Backend : !
I ¥ '
] ' service2
1 i ,'
]

service 3

' ™
service 1

Desktop

Backends for Frontends: Problem

Frontend Team Backend Team

Downstream Services

More Data
More Requests

]
. ' service1
Desktop \ ' I

Location
Barcode

Specific Androd,-—-—) API Backend ' > service2 !

Specific I0S , . service 3

Android Mobile 2ol

|IOS mobile

Backends for Frontends: Solution

More Data
€—\ore Requests |

;

Desktop

Specific Android
<€— |ocation
- Barcode

Android Mobile

|IOS mobile

Specific |IOS

<€ Battery

Desktop Team

Desktop API| Backend

Android Team

Android APl Backend

|OS API Backend

Downstream Services

Retry: Problem

e The fault is temporary and short-lived.

e The service has the potential to recover from the fault and return to normal operations soon

Service A

Service B

Retry: Solution

e Idempotency in the invoked operation is important.
e What should be the time intervals for sending requests to the service: Fixed, Incremental, or Exponential?
e How many times should the request be sent?

regquest
. >
request
Service A > Service B
reguest
- >
<

2XX

Circuit Breaker: Problem

e We operate under the assumption that faults are temporary when using the retry pattern. But what happens if
they’re not?

e Optimistic view: even if one request fails, the subsequent one will succeed.
e Pessimistic view: if a series of requests have failed, the following one will fail as well.

Circuit Breaker: Solution

#requests: 50
#failed: 2

Service A Service B

Service A Service B

#requests: 50
#failed: 25

Circuit Breaker: Solution

success count threshold reached Tallure rate threshold reached

Half-Open timeout timer expires

operation failed

Bulkhead

Using excessive resources of one service can negatively impact other services.

bulkhead

Bulkhead: Kubernetes example

apiVersion: vi
kind: pod
metadata:
name: nginx-reverse-proxy
spec:
containers:

- name: nglnx-reverse-proxy-container
image: nginx
resources:

requests:
memory: "512Mi"
cpu: "1"

limits:
memory: "1024Mi"
cpu: "2"

Further Resources

e youtube.com/@golemcourse

