
Cloud Patterns: Part 1
Systems Analysis & Design

Learning Objectives

By the end of this session, you will have acquired the following information:

● Ambassador
● Anti-Corruption Layer
● Backends for Frontends
● Retry
● Circuit Breaker
● Bulkhead
● Dead Letter Queue
● Rolling Deployment
● Blue-Green Deployment
● Canary Deployment
● Scatter-Gather
● CQRS

Ambassador: Problem

● We have to implement infrastructure-related features:
○ monitoring
○ service discovery
○ logging
○ encryption

● What if Service A is a legacy service and we are unable to change its source code?
● What if we have multiple services, each developed in a different programming language?

Ambassador: Solution

● Service meshes like Consul or Istio embody this concept at a production level.
● In the Kubernetes environment, we deploy the Ambassador within the same pod that houses the service

container.

Anti-Corruption Layer: Problem 1

● During migration, we may need to interface with the legacy system and data.
● The legacy system may employ an outdated protocol.

Anti-Corruption Layer: Problem 2

● We may need to engage with external systems, beyond our control, that could be using an outdated protocol.

Anti-Corruption Layer: Solution

Backends for Frontends: Problem

● For interfacing with multiple downstream services, an API backend is required.

Backend TeamFrontend Team

Backends for Frontends: Problem

Backend TeamFrontend Team

Backends for Frontends: Solution

Desktop Team

Android Team

IOS Team

Retry: Problem

● The fault is temporary and short-lived.
● The service has the potential to recover from the fault and return to normal operations soon

Retry: Solution

● Idempotency in the invoked operation is important.
● What should be the time intervals for sending requests to the service: Fixed, Incremental, or Exponential?
● How many times should the request be sent?

Circuit Breaker: Problem

● We operate under the assumption that faults are temporary when using the retry pattern. But what happens if
they’re not?

● Optimistic view: even if one request fails, the subsequent one will succeed.
● Pessimistic view: if a series of requests have failed, the following one will fail as well.

Circuit Breaker: Solution

Circuit Breaker: Solution

Bulkhead

Using excessive resources of one service can negatively impact other services.

Bulkhead: Kubernetes example

apiVersion: v1

kind: pod

metadata:

name: nginx-reverse-proxy

spec:

containers:

- name: nginx-reverse-proxy-container

image: nginx

resources:

requests:

memory: "512Mi"

cpu: "1"

limits:

memory: "1024Mi"

cpu: "2"

Further Resources

● youtube.com/@golemcourse

